skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chang, Kristina F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dual-comb spectroscopy in the ultraviolet (UV) and visible would enable broad bandwidth electronic spectroscopy with unprecedented frequency resolution. However, there are significant challenges in generation, detection, and processing of dual-comb data that have restricted its progress in this spectral region. In this work, we leverage robust 1550 nm few-cycle pulses to generate frequency combs in the UV–visible. We combine these combs with a wavelength multiplexed dual-comb spectrometer and simultaneously retrieve 100 MHz comb-mode-resolved spectra over three distinct harmonics at 386, 500, and 760 nm. The experiments highlight the path to continuous dual-comb coverage spanning 200–750 nm, offering extensive access to electronic transitions in atoms, molecules, and solids. 
    more » « less
  2. The electronic character of photoexcited molecules can abruptly change at avoided crossings and conical intersections. Here, we report direct mapping of the coupled interplay between electrons and nuclei in a prototype molecule, iodine monobromide (IBr), by using attosecond transient absorption spectroscopy. A few-femtosecond visible pulse resonantly excites the B ( Π 3 0 + ) , Y(0 + ), and Z(0 + ) states of IBr, and the photodissociation dynamics are tracked with an attosecond extreme-ultraviolet pulse that simultaneously probes the I-4 d and Br-3 d core-level absorption edges. Direct comparison with quantum mechanical simulations unambiguously identifies the absorption features associated with adiabatic and diabatic channels at the B/Y avoided crossing and concurrent two-photon dissociation processes that involve the Y/Z avoided crossing. The results show clear evidence for rapid switching of valence-electronic character at the avoided crossing. 
    more » « less
  3. Abstract Conical intersections between electronic states often dictate the chemistry of photoexcited molecules. Recently developed sources of ultrashort extreme ultraviolet (XUV) pulses tuned to element-specific transitions in molecules allow for the unambiguous detection of electronic state-switching at a conical intersection. Here, the fragmentation of photoexcitediso-propyl iodide andtert-butyl iodide molecules (i-C3H7I andt-C4H9I) through a conical intersection between3Q0/1Q1spin–orbit states is revealed by ultrafast XUV transient absorption measuring iodine 4dcore-to-valence transitions. The electronic state-sensitivity of the technique allows for a complete mapping of molecular dissociation from photoexcitation to photoproducts. In both molecules, the sub-100 fs transfer of a photoexcited wave packet from the3Q0state into the1Q1state at the conical intersection is captured. The results show how differences in the electronic state-switching of the wave packet ini-C3H7I andt-C4H9I directly lead to differences in the photoproduct branching ratio of the two systems. 
    more » « less
  4. The photodissociation dynamics of alkyl iodides along the C–I bond are captured by attosecond extreme-ultraviolet (XUV) transient absorption spectroscopy employing resonant ∼20 fs UV pump pulses. The methodology of previous experiments on CH3I [Chang et al., J. Chem. Phys. 154, 234301 (2021)] is extended to the investigation of a C–I bond-breaking reaction in the dissociative A-band of C2H5I, i-C3H7I, and t-C4H9I. Probing iodine 4 d core-to-valence transitions in the XUV enables one to map wave packet bifurcation at a conical intersection in the A-band as well as coherent vibrations in the ground state of the parent molecules. Analysis of spectroscopic bifurcation signatures yields conical intersection crossing times of 15 ± 4 fs for CH3I, 14 ± 5 fs for C2H5I, and 24 ± 4 fs for i-C3H7I and t-C4H9I, respectively. Observations of coherent vibrations, resulting from a projection of A-band structural dynamics onto the ground state by resonant impulsive stimulated Raman scattering, indirectly reveal multimode C–I stretch and CCI bend vibrations in the A-bands of C2H5I, i-C3H7I, and t-C4H9I. 
    more » « less